6. PARTIAL FRACTIONS

Quick Review

1. An expression of the form $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$, where n is a non negative integer and $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are real numbers such that $a_{n} \neq 0$, is called a polynomial in x of degree n.
2. Division Algorithm : If $f(x), 0 \neq g(x)$ are two polynomials, then \exists polynomials $q(x), r(x)$ uniquely such that $f(x)=q(x) g(x)+r(x)$ where $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$. The polynomial $q(x)$ is called quotient and the polynomial $r(x)$ is called remainder of $f(x)$ when divided by $g(x)$.
3. If $f(x), g(x)$ are two polynomials and $g(x) \neq 0$ then $\frac{f(x)}{g(x)}$ is called a rational function or rational fraction.
4. A fraction $\frac{f(x)}{g(x)}$ is said to be a proper fraction if $\operatorname{deg} f(x)<\operatorname{deg} g(x)$. Otherwise it is said to be an improper fraction.
5. If a rational function can be expressed as a sum of two or more proper fractions, then each fraction is called a partial fraction of the given function.
6. Let $\frac{f(x)}{g(x)}$ be a proper fraction.
(i) If $(a x+b)^{n}$ where $n \in N$, is a factor of $g(x)$ then the partial fractions corresponding to this factor are $\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\ldots+\frac{A_{n}}{(a x+b)^{n}}$, where $A_{1}, A_{2}, \ldots A_{n}$ are constants.
(ii) If $\left(a x^{2}+b x+c\right)^{n}$ where $n \in N$, is a factor of $g(x)$ then the partial fractions corresponding to this factor are $\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\ldots+\frac{A_{n} x+B_{n}}{\left(a x^{2}+b x+c\right)^{n}}$ where $A_{1}, A_{2}, \ldots A_{n}, B_{1}, B_{2}, \ldots, B_{n}$ are constants.
7. $\frac{p x+q}{(x-a)(x-b)}=\frac{p a+q}{(x-a)(a-b)}+\frac{p b+q}{(b-a)(x-b)}$.
8. $\frac{p x+q}{(x-a)(x-b)(x-c)}=\frac{p a+q}{(x-a)(a-b)(a-c)}+\frac{p b+q}{(b-a)(x-b)(b-c)}+\frac{p c+q}{(c-a)(c-b)(x-c)}$.
9. $\frac{p x+q}{x^{2}(x-a)}=\frac{-q}{a x^{2}}-\frac{p a+q}{a^{2} x}+\frac{p a+q}{a^{2}(x-a)}$.
10. If $|x|<a,|x|<b$ then the coefficient of x^{n} in $\frac{x}{(x-a)(x-b)}$ is $\frac{a^{n}-b^{n}}{a-b} \cdot \frac{1}{a^{n} b^{n}}$.
