6. PARTIAL FRACTIONS

Quick Review

- 1. An expression of the form $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$, where n is a non negative integer and $a_0, a_1, a_2, ..., a_n$ are real numbers such that $a_n \neq 0$, is called a polynomial in x of degree n.
- 2. **Division Algorithm :** If f(x), $0 \neq g(x)$ are two polynomials, then \exists polynomials q(x), r(x) uniquely such that f(x) = q(x) g(x) + r(x) where r(x) = 0 or deg $r(x) < \deg g(x)$. The polynomial q(x) is called quotient and the polynomial r(x) is called remainder of f(x) when divided by g(x).
- 3. If f(x), g(x) are two polynomials and $g(x) \neq 0$ then $\frac{f(x)}{g(x)}$ is called a rational function or rational fraction.
 - fraction.
- 4. A fraction $\frac{f(x)}{g(x)}$ is said to be a proper fraction if deg f(x) < deg g(x). Otherwise it is said to be an improper fraction.
- 5. If a rational function can be expressed as a sum of two or more proper fractions, then each fraction is called a partial fraction of the given function.
- 6. Let $\frac{f(x)}{g(x)}$ be a proper fraction.

(i) If $(ax + b)^n$ where $n \in N$, is a factor of g(x) then the partial fractions corresponding to this factor are $\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + ... + \frac{A_n}{(ax+b)^n}$, where $A_1, A_2, ..., A_n$ are constants.

(ii) If $(ax^2 + bx + c)^n$ where $n \in N$, is a factor of g(x) then the partial fractions corresponding to this factor are $\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_nx + B_n}{(ax^2 + bx + c)^n}$ where $A_1, A_2, \dots, A_n, B_1, B_2, \dots, B_n$ are constants

are constants.

7.
$$\frac{px+q}{(x-a)(x-b)} = \frac{pa+q}{(x-a)(a-b)} + \frac{pb+q}{(b-a)(x-b)}$$

8.
$$\frac{px+q}{(x-a)(x-b)(x-c)} = \frac{pa+q}{(x-a)(a-b)(a-c)} + \frac{pb+q}{(b-a)(x-b)(b-c)} + \frac{pc+q}{(c-a)(c-b)(x-c)}.$$

9. $\frac{px+q}{x^2(x-a)} = \frac{-q}{ax^2} - \frac{pa+q}{a^2x} + \frac{pa+q}{a^2(x-a)}$.

10. If |x| < a, |x| < b then the coefficient of x^n in $\frac{x}{(x-a)(x-b)}$ is $\frac{a^n - b^n}{a - b} \cdot \frac{1}{a^n b^n}$.